SUSTAINABLE URBAN GROUND WATER MANAGEMENT Present scenario and future challenges

R.S. Sinha
Sr. Hydrogeologist
Ground Water Deptt., U.P.

A Key Resource

- In urban development, Ground Water plays a key role, as surface water sources are inadequate.
- But it is perhaps the most neglected resource.
- The resource is not being given the desired importance.

URBAN SCENARIO

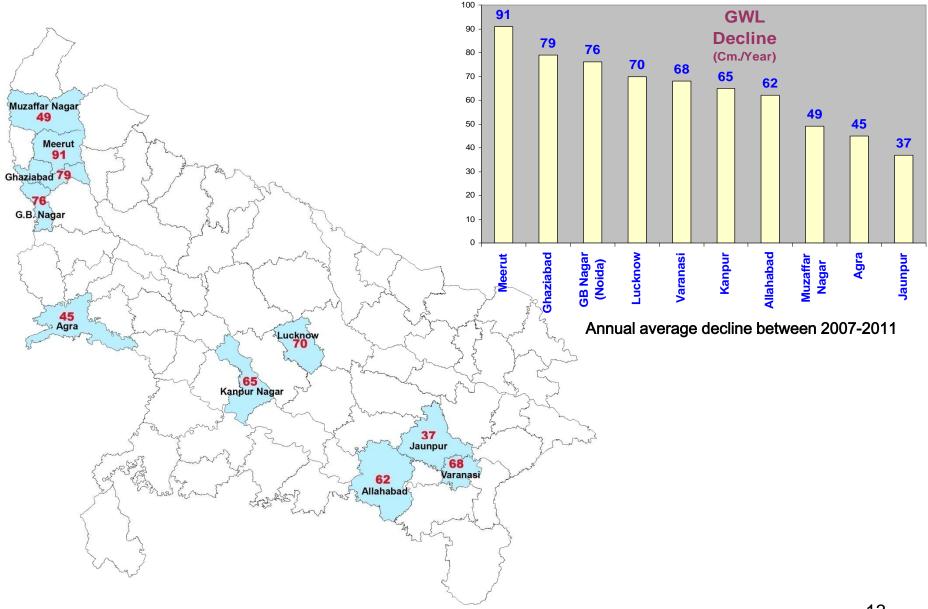
- There are overall 630 major and small townships in U.P.
- Majority are located on alluvial aquifers of Indo-Gangetic plain
- Dependency on ground water for drinking & allied purposes, especially in big cities have mushroomed
- In most of the other urban centers, 80-90% of drinking water demand is being met through tube wells & hand pumps.
- Private tube well construction activity, especially in multistory buildings & housing colonies, is going on unchecked

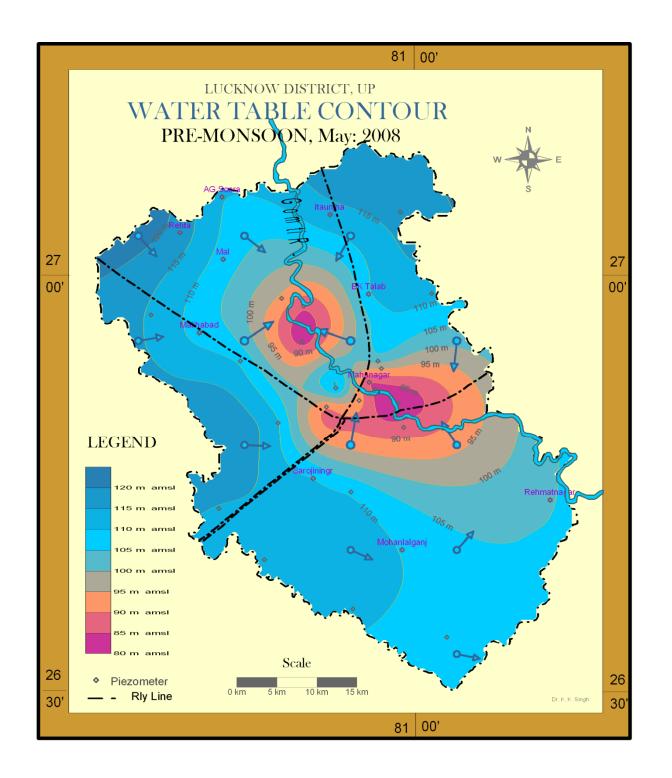
URBAN GROUND WATER- UNDER STRESS

- The resource is being extracted without having any knowledge of its potential.
- Ground water domain in Urban centers of U.P.
 - under severe stress, both quantitatively & qualitatively.
- Unscientific and unregulated ground water extraction in urban areas have almost reached to unsustainable levels.
- Poor quality trends of groundwater have also emerged as possible threat to potable water supplies.

URBAN SCENARIO

- The reason being that no methodology could be evolved so far for estimating the resource potential within the urban domain.
- Due to concrete development, vertical recharge in urban areas has gone down appreciably and the dynamic resource potential has almost exhausted.
- Over-exploited condition developed in Lucknow, Kanpur, Ghaziabad and other areas.
- Overall situation of groundwater resource in urban centers is quite grave, but it has never been given due recognition.


URBAN ISSUES


- The resource availability of urban groundwater is not known
- Micro level urban aquifer dynamics of Ganga basin is also not clear
- Urban rain water harvesting has been started in hurry without the prior study of urban hydrogeological conditions.
- Scientific aspects of recharging are being ignored.
- Unscientific implementation of recharge schemes may pollute the alluvial aquifers, which once get polluted, can never be revived.
- Various gaps & lacuna in development & management process of urban ground water.

Alarming Situations in Urban Centers

- ➢ In urban centers, ground water situations are much more disturbing.
- > The rate at which ground water levels in major cities are going down, it is possibly difficult to rejuvenate/recover.
- ➤ The reason being that the drinking water supplies are heavily dependent on ground water.
- Major cities including Lucknow & Kanpur are experiencing high water level decline due to over exploitation & resultant stress on aquifer group I (upto 150 mbgl).
- Lucknow city: Glaring example of 'Hydrogeological Stress' with ground water level decline of 50 cm to 1.5 Mt./yr.

YEARLY GROUND WATER LEVEL DECLINE IN MAJOR CITIES OF UTTAR PRADESH

URBAN GROUND WATER RESOURCE ESTIMATION: NO NORMS, NO EFFORT

- Scientific norms have not been evolved for the urban areas.
- This is the reason that ground water resource potential for the urban areas is not known
- Indiscriminate resource development is taking place on unscientific lines.
- No regulation for Ground water exploitation.

SEPARATE NORMS REQUIRED

- GEC-97 norms are not suitable/ valid for computing the groundwater resources of urban areas
- In urban areas the vertical recharge components may be quite small
- Total vertical recharge may be severely curtailed
 - Due to large paved areas
 - Almost complete absence of the recharge form applied irrigation/canal seepage
- Vertical Recharge shall be only the rainfall recharge.
- Hence, separate norms are required for urban areas.

SCENARIO OF RAIN WATER HARVESTING -SOME FACTS

- Since 2000, various rain water harvesting schemes executed by different agencies in the state.
- But the desired results could not be obtained.
- The scientific & engineering approach in the implementation of RWH schemes is missing.
- The concept is yet to be scientifically understood.
- There is no effective implementation & monitoring mechanism in the state

RWH – AN "AREA SPECIFIC ISSUE"

Rain Water Harvesting structure is an area / site specific system.

- ☐ 'Hydrogeology' is the most vital component of RWH, providing base line informations for planning, designing and implementation of RWH & Ground Water recharge programme in an area.
- Locations feasibility.
- Rainfall data.
- Water level decline & depth to ground water.
- Magnitude of ground water extraction.
- Status of ground water resource.
- Lithological configuration.
- Qualitative & quantitative aspects.

GUIDELINES FOR RWH & GWR

Ground Water Department has issued detailed guidelines in April,2006- which are not being followed

- Areas of continuous Ground Water level Decline
- Where post-monsoon ground water level is more than 8 mt. deep b.g.l.and annual decline of water level is above 20 cm. in pre-monsoon. (This condition pertains to Alluvial region).
- In Hard rock region of Bundelkhand- Vindhyans, the depth to water level limit will be 5mt.bgl.
- Over-exploited / Critical Blocks
- Over- exploited Urban Areas

POLICY INITIATIVES IN RAIN WATER HARVESTING

Govt. of UP has initiated Rain Water Harvesting and Ground Water Recharge Programme in the State in a big way and various initiatives have been taken.

- •Executive Committee under the Chairmanship of Chief Secretary constituted to review RWH schemes in the State.
- •Ground Water Deptt. declared as "Nodal Agency" to monitor RWH & GW Management.
- TCC under chairmanship of DM for RWH Projects.

----POLICY INITIATIVES

16th to 22nd July declared as Ground Water Week.

RWH introduced as subject for 6th to 8th class.

Ground Water Policy declared on 18th Feb, 2013.

----PROVISIONS OF RWH & GWR

□ DECISIONS TAKEN -

- Conserving existing ponds / reservoirs in new housing schemes.
- Provision of 5% land for water body.
- DEPTHS OF PONDS 3 mts (Identify natural catchment & feasibility assessment).
- In parks, only 5% area be covered with concrete / pavements.

----PROVISIONS OF RWH & GWR

- Foot paths / tracks be provided with permeable/ perforated blocks. Pavements should not be concrete.
- Recharge shaft not to be constructed in ponds where risk of industrial/other polution may occur.
- Direct recharging of rain water to aquifers from open/paved/unpaved areas is not permitted (as per G.O. April,2006).

ROOF TOP RAIN WATER HARVESTING (POLICY DECISIONS)

- □In lay- out plans of (newly/ proposed) Group Housing schemes (Govt./Pvt.), separate network of pipes for combined RWH / recharging system be provided.
- □Vide G.O. Dated 01-07-08, Housing department, GOUP, has modified the initial provisions of RWH, wherein recharging system made compulsory for plots of 300 sq.m. & above.

□GOVT./SEMI GOVT. BUILDINGS:

Installations of RWH/GWR structures are made compulsory for all Govt./semi Govt. buildings in the state.

COMBINED RECHARGE SYSTEM (A new policy provision)

- Combined Recharge System has been made mandatory for new housing colonies.
- Order issued by Housing Department in June, 2009

POLICY DECISIONS FOR INDUSTRIES

- ☐ For Ground Water Level/Quality monitoring, PIEZOMETERS made compulsory for industries.
- □ Rain Water Harvesting: All industries, including existing and new, which are drawing ground water shall mandatorily undertake artificial recharge measures.

CHALLENGES & GAPS

- No rules/ provisions for existing housing colonies, leaving a major chunk of urban areas, remain unutilized for RWH.
 - A big gap.
- The collective system of Roof Top RWH is the most feasible and potential option to conserve the storm water run-off especially in the existing residential colonies.
- Rain Water harvesting is being carried out in Isolation.
- No effective monitoring/ implementation mechanism
- No department made responsible for assessing the impact of RWH, the exact benefit is yet to be estimated.

---CHALLENGES & GAPS

- Area specific concept & the geo-scientific guidelines not being followed.
- Hydrogeological parameters being neglected
- Pre-project hydrogeological surveys in mega schemes not conducted.
- In spite of the ban, rain water from paved / unpaved area, parks, open fields is allowed in some cases for direct recharging of aquifers. This is a matter of pollution risk.
- Various provisions of Government orders on RWH are not being properly implemented.

---CHALLENGES & GAPS

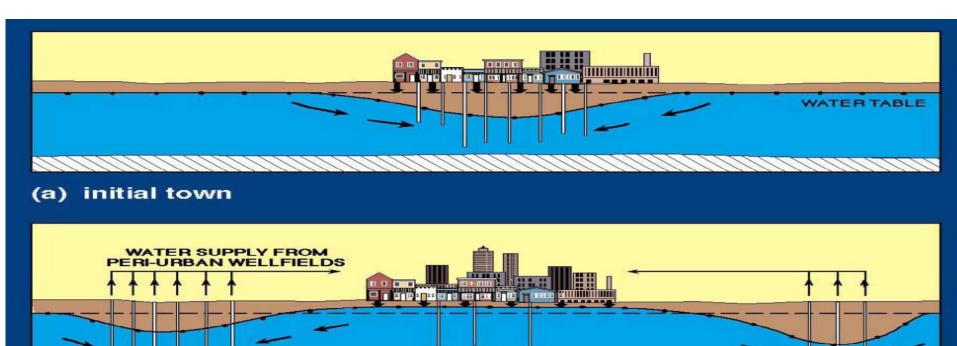
- Construction of recharge shafts in ponds has not been stopped, despite risk of contamination.
- No mechanism to monitor the status of RWH in private buildings.
- There are gaps in the implementation methodology.
- Maintenance of recharge structure, especially roof top system is being totally ignored. Such negligence may lead to chocking of structure with risk of bacteriological pollution.
- There is also no mechanism of assessing impact of recharge schemes.
- Line departments are implementing recharge schemes in isolation.
- Overall, the monitoring & implementation mechanism in the state is almost fragmented.

Direct Recharging – A criminal negligence

- The direct recharging of rain water run-off through recharge wells from unpaved areas is not allowed.
- It may pollute the aquifers.
- The filters usually provided in such RWH systems can only check the physical impurities.
- The chemical contaminants dissolved in the run-off water can not be separated/ checked through this filtration method.
- Such contaminants will percolate into aquifers through injection wells.
- Such recharging should be discouraged.
- Should be treated as an act of criminal negligence for polluting the aquifers.

Unscientific Recharge System in Ram Manohar Lohia Park, Lucknow closed

- Way back in 2005, a RWH project was undertaken in Ram Manohar Lohia Park situated in Gomti Nagar, Lucknow.
- Hydrogeological considerations were ignored.
- 29 recharge wells of 60 m. depth constructed for recharging the storm water run-off from the open, unpaved catchment of the park.
- It was found that there were all chances of percolation of contaminated water from unpaved area directly into the aquifer and pollute ground water.
- Subsequent to directions, the concerned agency sealed all Recharge Wells constructed in the park to avoid any risk of groundwater contamination.


Undesirable Wastage of Ground Water

- Most of the urban water supplies are dependent on ground water.
- Due to faulty distribution system & pipe leakages and wastage, there are 40% losses.
- In Lucknow city, groundwater based municipal supply is about 300 MLD.
- With the pattern of leakages and overflows from water tanks in majority of the houses, about 120 MLD of ground water is being wasted, which goes to sewer lines.
- If it is saved and extra exploitation is regulated, the damage to aquifers can be checked & declining water levels will improve.

INTERVENTIONS NEEDED- URBAN AQUIFERS NEED IMMEDIATE RESPITE FROM FURTHER GROUND WATER EXTRACTION

- A separate long term IWRM Plan be prepared for a more harmonized conjunctive use of surface and groundwater.
- Excessive withdrawals from top aquifers (<150 mbgl) should be adequately reduced & regulated through a legislative provision.
- Strict measures with public awareness campaigns, are required to check undesirable wastage of drinking water.
 - Through the effective implementation of above 2 measures, ground water withdrawals can be certainly lowered down.
- The peri-urban region of urban agglomerates envisaging prolific aquifers can be systematically exploited to supplement city's water supply.
- Existing tube wells need to phased out.

MANAGEMENT OPTION FOR URBAN AREA

(b) town becomes city

(c) city expands

NEED TO MANAGE URBAN GROUND WATER

- Separate methodology/norms for Urban Ground Water Assessment should be formulated on priority basis.
- Comprehensive urban ground water management plans with separate regulatory provisions should be prepared.
- Withdrawals from Stressed Aquifers should be strictly regulated & minimized.
- Rain Water Harvesting & Recharging plans should be perceived in totality & not in isolation.
- In Rain Water Harvesting, risk of ground water contamination should never be ignored.